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Stochastic Biochemistry: Theme Overview

1. Stochastic Phenomena: origins and
consequences.

2. Single Cell Research.




Regulation

protein

Origins of Stochasticity:
1) Small molecular copy numbers

e Proteins build cellular structures, pass cellular
/4 /.} information and regulate cellular activities.
@5‘3 Variable copy numbers (~0-100,000/cell).

TTransIation

vy 4
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f/

| NG \ e mRNA transfer instructions for creating specific
proteins. Low copy numbers (~0-100/cell).

Transcription

e DNA contains all of the genetic instructions.
Extremely low copy numbers (~0-5/cell).

The Central Dogma of Molecular Biology




Origins of Stochasticity:
2) Spatial fluctuations of cellular constituents.

® o Thermal fluctuations will
N ® lead to randomness in
@ coocd times between reactions.




Origins of Stochasticity:
3) Competition of different events.
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Different reactions will
lead to different
conseguences.

/ Which ever molecule wins
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the race will define the
reaction.




Origins of Stochasticity:
4) Extrinsic fluctuations.

Changes in temperature, nutrients, radiation,
chemicals, pressure, etc...

Fluctuations of upstream genes, intercellular
signals.




Intrinsic versus Extrinsic Noise

Fluorescence

Time

High Intrinsic Noise
° - )

(:(:

-

* Inserted two reporter genes on the chromosome (cfp, yip)
* Each was controlled by the same promoter
* Expression of cfp shown in green, yfp in red

Fluorescence

Elowitz et al, “Stochastic Gene Expression in a Single Cell”, Science 2002




Stochastic Effects Lead to
Phenotypical Differences

Cc, the first cloned cat and her
genetic mother, Rainbow

Fingerprints of identical twins

J. Raser and E. O’Shea, “Noise in Gene Expression: Origins, Consequences, and Control”, Science, 2005
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Stochastic Phenomena:
1) Signal Amplification (or damping).
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Johan Paulsson , Otto G. Berg , and Mans Ehrenberg, “Stochastic Focusing: Fluctuation-
enhansed sensitivity of intracellular regulation” PNAS 2000

- Stochastic mean value different from deterministic steady state
* Noise enhances signal!




Stochastic Phenomena:
2) Noise Induced Oscillations

Circadian rhythm
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Vilar, Kueh, Barkai, Leibler, PNAS 2002
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* Oscillations disappear from deterministic model after a small reduction in deg. of repressor
* (Coherence resonance) Regularity of noise induced oscillations can be manipulated

by tuning the level of noise [EI-Samad, Khammash|
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Stochastic Phenomena:
3) Stochastic Switching

Same chemical environment.
Socos Same genetic code. cococ

M Random reactions can lead to
e vastly different results!

/H armlfess
phenotype. phenotype.

Munsky, Trinh, Hernday, Khammash, Low, under preparation, 2010

Highly infectious




The Importance of Single Cell Analyses

For these systems, we need
single cell analyses to answer:

* \What will happen? * \What advantages does it
* How frequently? provide?
* \Why does it happen? * How can we prevent it?

* Under what conditions? * How can we cause it?
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L 000
~ o Same chemical environment.
Socos Same genetic code. cococ

Random reactions can lead to
vastly different results!

> Genetic manipulations make * e~
. CD it easy to see changes under > '
Harmless the microscope.

/\€

th m?ecnous
phenotype. phenotype.

Munsky, Trinh, Hernday, Khammash, Low, under preparation, 2010




Stochastic Biochemistry: Theme Overview

1. Stochastic Phenomena: origins and
CoONsequences.

2. Single Cell Research.




Advances in single
cell research.

Statistical
methods

Automated tools

Model Fitting and
Validation

Bio-Control

Synthetic
Design
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Flow Cytometry and fluorescence
activated cell sorting

Automated tools

Time lapse fluorescence
microscopy
Cagatay et al, Cell 2009 =~

situ Hybridization (FISH)
Raj, Nature Methods 2007

Fluorescence microscopy,
Muzzey et al, Cell 2009




Advances in single
cell research.

Automated tools
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Advances in single
cell research.

Statistical
methods

Automated tools

Model Fitting and
Validation

Bio-Control

Synthetic
Design




mRNA Distributions (0.2M NaCl)
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Advances in single
cell research.

Model Fitting and
Validation
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Advances in single
cell research.

Statistical
methods

Automated tools

Model Fitting and
Validation

Bio-Control

Synthetic
Design
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Stochastic Biochemistry: Lecture Plan

1) Theoretical Techniques
(Munsky, Nemenman, Zilman)

2) Experimental Techniques
(Marrone, Raj, Werner, Voigt)




Lecture Plan:
1) Theoretical Techniques

e Today and Wednesday--Brian Munsky (LANL-CNLS)
» Modeling of stochastic effects in systems biology.
¢ Friday, August 6--llya Nemenman (Emory)
» Signal processing in biochemical networks: Fourier transforms, central limit
theorem, linear feedback, and all that.
¢ Monday, August 9-- Anton Zilman (LANL-CNLS)
» History of Stochastic Modeling in Physics.
» Advanced stochastic analyses: Fokker Planck equation, Moment Generating
Functions, etc...




Lecture Plan:
2) Experimental Techniques

Tuesday, August 3--Arjun Raj (U-Penn)

» Measuring cell-to-cell variability with fluorescence microscopy and single
molecule Fluorescence In Situ Hybridization (FISH) techniques.

Tuesday, August 3--Babetta Marrone (LANL-B9)

» Measuring cell-to-cell variability with flow cytometry and fluorescence
activated cell sorting.

Wednesday, August 4--Jim Werner (LANL-CINT)

» Fluorescence Correlation Spectroscopy (FCS) and 3 Dimensional Single-
Molecule Tracking

Wednesday, August 4--Brian Munsky (LANL-CNLS)

» Integrating single cell data and stochastic models.

Tuesday, August 10--Christopher Voigt (UCSF)

» Synthetic Biology




Lecture 1: Modeling of stochastic gene regulation
(Part 1).




On the menu...

e Today (Part 1)
» Solutions for Simple Stochastic Processes (Transcription)
» Importance of Population Size
» Stochastic Chemical Kinetics
» Moment Computations for Linear Propensities
» Moment Closures for Non-Linear Propensities
e \Wednesday (8:40-10:25) (Part 2)
» Monte Carlo Simulation Techniques
* Gillespie (SSA), Tau leaping, Chemical Langevin (SDEs), Slow Scale SSA.
» Density Computations with Finite State Projection Techniques
» Switch and Trajectory Analyses
» Examples and software




The Central Dogma of
Molecular Biology

¢ Proteins assemble to build cellular structures,
pass cellular information and regulate cellular

activities.

protein

TTransIation

,
¢ ) A\ %
SR PG
S A, .

MRNA [y (PREN _ _ _
S s\ _\’ * mRNA transfer instructions for the creation of
* specific proteins.

»

Regulation

Transcription

¢ DNA contains all of the genetic instructions.




The Central Dogma of
Molecular Biology

protein

',/T Deterministic model
V2 AmBENA _ ok
dt
d ter
TTransIation —[prcoltezn] — —yp[protein] —I—k:p[mRNA]

Stochastic model

e Probability a single mRNA is transcribed in
time dt is k,dt.

e Probability a single mRNA is degraded in
time dt is (#mRNA) - v,.dt




Intrinsic Variability in Gene Expression

Impact of variability

* Noise propagates through the
network

* |ts amount depends on
» # of molecules
» stoichiometry
» regulation
...

* Sometimes it is suppressed;
other times it is exploited

¢ Deterministic models are not
adequate

Source of variability at
cellular level....

 Small # of molecules

. Rard t “Intrinsic noise”
andaom events Slide Contributed by Mustafa Khammash




The Markov Description of Biochemical Processes




A Jump-Markov description of
chemical kinetics

® At any time, the state of the system is defined by its integer

population vector: x € Z"

® Reactions are transitions from one state to another:

[10, 15]

# species |

# spegt

[11,15]

[11,14] [12, 14]

34




A Jump-Markov description of
chemical kinetics

® At any time, the state of the system is defined by its integer
population vector: x € Z"

® Reactions are transitions from one state to another:

® These reactions are random, others could have occurred:

9,151 JEE [0, 5] (11,151 P (12, 15]
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A Jump-Markov description of
chemical kinetics

Or others...
(8, 16] VEEEE [9 6] PEEE (10, 16] [11,16] [12, 16]

(8,151 Wl (9 5 P [0, 5 (11,157 D 12, 15]

I8, 14] 19,14] VI [10, 14] [11,14] [12, 14]

[
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A Jump-Markov description of
chemical kinetics
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A Jump-Markov description of
chemical kinetics

Or others... —@)—
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A Jump-Markov description of
chemical kinetics

B 8568909808
Or others... *Q*g: *.*.*.*.*8
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Reaction Stoichiometry

* The Stoichiometric vector, s, refers to the relative change in the
population vector after a reaction.
* There may be many different reactions for a given stoichiometry.

S1 — [170]T S2 — [_17O]T S3 = [07 1]T S4 = [17_1]T
S1—85+85 S1+651— & So — So + So So — &7
Sy — Sy + 83 S1+ Sy — Sy S — 51+ 89 S1+8— S+ 5

@—>81 81—>@ @—>82 So+S— 51 +5

[9, 5] [10,15] PEEER [|],15] VEEE«d [I2, 5]

— [9,&[|o,|4] E [11,14] [12, 14]
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Reaction Propensities

* The propensity, w, of a reaction is its rate.

* w,dt is the probability that the 11" reaction will occur in a
time step of lengthdt.

* Typically, propensities depend only upon reactant populations.

So = [—170]T w2(£131,332)
81 + 81 — 81 kla:g(azl — 1)/2
S +S — S koxixo

81 — @ ]Cgl‘l

[10, 15] [11,15] [12, 15]

[10, 14] (11, 14] @(7
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Markov is a forgetful process




Markov Reaction Times

Probability reaction will occur in[t,t 4+ At): wAt + O(At)?
Probability reaction will not occur in [t,t + At) 1 —wAt 4+ O(At)?

Probability a reaction will not occur in two such time

intervals[t, ¢ 4 2At): (1 — wAt + O(At) ) =1 — 2wAt + O(At)?

Suppose thaty = KAt , then the probability that no reaction will
occur in the interval [t,t 4 T) is
K
(1 - w% + O(K_2)>
Taking the limit as K goes to infinity yields that the probability that
no reaction will occur in the interval [¢, tK+ T)is
lim (1 — w% + O(K_2)) = exp(—wT)

k— o0

43




Markov Reaction Times

The probability that a reaction will occur in the interval [,1 + T)
is F'r(7) =1 — exp(—wr). This is a cumulative distribution.

The density (derivative) of the random number, 7', is:

fr(r) = exp(~wr)

Such a random number is known as an exponentially distributed
random number.

Notation: 7T € EXP(\) — T'is an exponentially
distributed r.v. with
parameter: \.

44




Markov Reaction Times

® We have assumed that the system is fully described by the
population vectors.

® |f no reaction occurs, then nothing will have changed.
® Waiting times must be memoryless random variables.

Fo Fo Fo
(7,] (7] (7,]
C C c
(0] Q Q
0 re-scale 0 re-scale o
Fo > & Fo
el e e
(o] (o] (o]
0 0 0
o o L 0
a time (s) a time (s) o time (s)

® No matter where we cut and scale the distribution, it must
always looks the same.

The exponential is the only
continuous r.v. with this property. s




Generating Reaction Times

® Jo generate an exponentially distributed random number, all we
need is a uniform random number generator.

1 — exp(—A\t)

® Find the cumulative distribution,
F(t) =1 — exp(—At)

® Generate uniform random number,
r € U0, 1]

® Find intersection where F'(t) = r:

11 1
T=—10
gl—r

A

® This is the time of the next reaction.

\Cumuatve&:\rbuton

time (s)

46




The (Chemical) Master Equation
(Forward Kolmorogrov Equation)




The Chemical Master Equation

Prob. that no reactions fire in [t,t +dt] = 1 — S wr(x)dt + O(dt?)
Prob. that reaction Ry fires once in [t,t + dt] = wi(z)dt + O(dt?)
Prob. that more than one reaction fires in [t,t + dt] =O(dt?)

at x No reaction fires

p(z,t+dt) = p(a,t) (1 — 5wy (z)dt + (’)(dt2)>
k

+ 3 plx — sp,t) (Z wy.(z)dt + O(dtQ)) + O(dt?)

k k
R;. reaction more than one

R fires once : :
away from z k reaction in dt

pla,t+dt) —plz,t) = —p(x,t)Yy wilw dt+sz—sk, tywg(z)dt + O(dt?)
k

The Chemical Master Equation

WD - ) > (@) + 2 pe = sy, (@ — 5i)

Slide Contributed by Mustafa Khammash




Example: Transcription and degradation of mRNA




RNA Copy Number as a Random Variable

g MRNA copy number N(t) is a random variable
mMRNA Q{‘@ —
Transcription: Probability a single mRNA
L{ is transcribed in time dt is k dt
= . Degradation: Probability a single mRNA

is degraded in time dt is nvydt

(n—1)y 1Y (n+ 1)y

Slide Contributed by Mustafa Khammash




Key Question: : : ; : : :
QR 555

v o -1y Y (n+1)y

Find p(n,t), the probability that N(t) = n.

P(n,t+dt) = P(n—1,t) - kdt Prob.{N(t) =n — 1 and mRNA created in [t,t+dt)}
+ P(n+1,t)-(n+ 1)ydt  Prob.{N(t) =n+ 1 and mRNA degraded in [t,t+dt)]

+ P(n,t) - (1 — kdt)(1 — nydt) Prob.{N(t) =n and
MRNA not created nor degraded in [t,t4dt)}

P(n,t+dt) — P(n,t) = P(n — 1,t)kdt + P(n + 1,t)(n + 1)vdt — P(n,t)(k + nvy)dt
+0(dt?)

Dividing by dt and taking the limit as dt — O

The Chemical Master Equation

%p(n,t) = kP(n—1,t) + (n 4 1)yP(n + 1,£) — (k + ny)P(n, t)

v,
oIlde UOTrouted Oy IViusidld Kammash




MRNA Stationary Distribution

We look for the stationary distribution P(n,t) = p(n) Vt

The stationary solution satisfies: %P(n,t) =0

From the Master Equation ...

(k +ny)p(n) = kp(n — 1) + (n+ 1)yp(n + 1)

n =0 kp(0) = vp(1)
n=1 kp(1) = 29p(2)

n =2 kp(2) = 3vp(3)

[ kp(n — 1) = ny p(n)

Stide Contributed by Mustafa Khammash




kp(n — 1) = nvy p(n) We can express p(n) as a function of p(0):

pn) = “ L pm—1)
v
= (5> Ll pn-2)
v) n n-|

(K\"1
= (%) 5w
v/ mn!
o0
We can solve for p(0) using the fact ) p(n) =1

00 n n=0
1=y (ﬁ) = p(0)
n=0 \"7 n:

= 1 p0) = p(0)=eF

a™ k
— Poisson Distribution

Slide Contributed by Mustafa Khammash




We can compute tnhe mean and variance of the Poisson RV N with
density p(n) = e %%;:

nl-

_ xO O an
p=~FE[N]l= ) npn)=e ) n—=a
n=0 n=0 v
The second moment
(0. @]
E[N?] = > n’p(n) = a®+a
n=0

Therefore,
02 = E[N?] — E[N]? = a

mean = variance = a

The coefficient of variation Cy, = o /pu is

1 1
CU: =

B

Slide Contributed by Mustafa Khammash
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The Relationship of Deterministic to Stochastic
Biochemical Processes.




Relationship of Stochastic and
Deterministic Descriptions

Given N species X, ..

., Xy and M elementary reactions. Let ®; := [X].

A deterministic description can be obtained from mass-action Kinetics:

dP

&8 = 55(@)

dt

where f(-) is at most a second order monomial. It depends on the type
of reactions and their rates.

Example:

A

dt
dP

dt
do ¢

dt

k1
A4+ B —C
Ak p

—k1P PR — koD y

—k1PAPp + k2P y

k1P PR

or

S

dd

— = Sf(P) where

— = SF(®)
-1 -1
11|, f(@) = [FPA%E
1 0 ko® 4




Relationship of Stochastic and
Deterministic Descriptions

- X
Define X$2(¢) = #

Question: How does X%%(t) relate to ®(¢)?

Fact: Let &(¢) be the deterministic solution to the reaction rate equa-

tions
dd

d— = Sf(®), ®(0) = Po.
t
Let XQ(t) be the stochastic representation of the same chemical sys-
tems with X%2(0) = ®y. Then for every ¢ > 0:
lim sup ‘XQ(s) — CD(S)’ =0 a.s.

(1 —o00 5<¢

Slide Contributed by Mustafa Khammash




x produced with rate k(x)
and degraded with rate vygz.

80} YoL
60 ]{;(x)
40} ]
20
00 éO 4‘0 6‘0 8‘0 100
¢, or X=X/
w1(¢) =Y

¢10
wo(P) = (20 + 40575 " ¢10)
Deterministic

I Q=3 |
s mr”%wmw
50
< SN
8 % 10 20 30 40 50
100 ‘ ‘
S Q=10
50}
% 10 20 3 40 50
t|me(83

(X/)"

wa(X) =0 (20 + 40

Stochastic

4010 1 (X/Q)10
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Moment Computations

e Affine Propensity
® Moment Closures




Moment Computations

For the first moment E[X;], multiply the CME by z;
and sum over all (z1,...,zy) € NV

For the second moment E[X;X,], multiply the CME by z;z;
and sum over all (z1,...,zy) € NV

M
dE[X;] Y s Elwg(X)]

X M
k=1

Let w(z) = [wi(z),...,wy(x)]T

In matrix notation:
dE[X]
dt

T
dE[iz(tX b = SBOOXT) + Blw(X)XTITST + S{diagBluw(X)]}ST

SE[w(X)]




Affine Propensity

Suppose the propensity function is affine:

w(x) = Wz 4 wo, (W'is Nx N, wg is N x 1)
Then E[w(X)] = WE[X]4+wq, and E[w(X)X!] = WE[X X1 +woE[X1].

This gives us the moment equations:

d
—BIX] = SWE[X] + Suwo First Moment

d

£E[XXT] = SWEXXT+ E[xXXTIWTsT + 8 diag(WE[X] + wg)ST

+ SwoE[XT]+ E[X]wgST Second Moment

These are linear ordinary differential equations and can be easily solved!

Slide Contributed by Mustafa Khammash




Affine Propensity (cont.)

Define the covariance matrix ~ = E[(X — E[X])(X — E(X)]1].
We can also compute covariance equations:

d
T =SWEX+ sWST + 8 diag(WE[X] 4+ wg) ST

Steady-state Case
The steady-state moments and covariances can be obtained by solving

linear algebraic equations:

Let X = lim E[X(t)] and X = lim < (¢).
t—00 t—0o0

Then

SWX = —Sw

SWE 4+ WSt + 8 diag(WX 4+ wg)ST =0

Slide Contributed by Mustafa Khammash




Fluctuations Arise from Noise Driven Dynamics

Define A= SW, and B = S,/diag(W X + wg).
The steady-state covariances equation

SWE 4+SwWhst + 8 diag(WX 4+ wg)ST =0

becomes

A +5AT 4+ BB =0 Lyapunov Equation

Slide Contributed by Mustafa Khammash




Example: Gene Expression




Application to Gene Expression

g' & 4
protein g g
| b
mRNA % gﬂ-’, _» 0

.

Reactants
Xq1(t) is # of MRNA; X5>(t) is # of protein

Reactions

Ri:¢ i mRN A

Ro: mRNA % 4

R3z: mRNA @ protein + mRN A

R4 : protein v, o

Stoichiometry and Propensity

M

0 0 1 -1
k| [0 O] k..
X ol [x 0
wX)= "t =" [ 1]+
pX1 kp O] [X2 0
1pX2] 0 | 0|




Steady-State Moments

A=SW = [_%" o1, Swg = [krl
kp = 0
- e ]
— /YT
X = —A_ls’wo =
Fphr
| VY
Steady-State Covariance
_ 2k 0
BBT = S diag(WX 4+ wg)ST = { OT Qkka]
Yr

The steady-state covariances equation
AS +5AT 4+ BBT =0 Lyapunov Equation

can be solved algebraically for X.
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Coefficients of Variation

1 1
2
Cor = &y — <.
Ir 1
1 k 1 k
Cgp: 1_|_—p == |1+ r
—57"579 Yr =+ p X2 Yr =+
rYp

Question: Does a large X5 imply a small Cyp?
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, which can be chosen independently from Cyp.

Large mean does not imply small fluctuations!
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Moment Computations

e Affine Propensity
® Moment Closures




Moment Closures.

From before, the mean level changes as:
X = $B[w(X))

e \When Second and Higher order terms exist in the propensity functions,
each moment depends upon higher moments.
» For example, if w(X)=uX"Xv , then

dE[X]
di

¢ The first moment depends upon the second; the second upon the third;
and so on.

= SuE[X'X]v

¢ Moment closures are approximations that attempt to remove this
dependence.




Moment Closures.
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where the choice of w1 and wuo
depends upon the chosen moment closure.




Gaussian Moment Closure

¢ |f one assumes that the distributions are Gaussian, then the closure is
simple:

ok = B{(X; — E{Xi})(X; — E{X; )(Xx —E{Xi})} =0

e which yields:
E{(X;X; X} = —E{X; X }E{ X} } — E{X; X}, }E{X;}
—E{Xp X }E{ X } + 2E{ X; }E{ X }E{ X} }

e Higher moments are easy to derive with a moment generating function:
My (t) = exp ('t +1/2¢" ¢),
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Many other closures are possible:

¢ |f one assumes that the distributions are Log-Normal, a different closure
IS used:

E[XG;XGE[X; X JE[LX; X ] |

E[X;X;Xg] = E[X]E[X,]E[X}]

¢ One of the most common closures is the Linear Noise Approximation.

¢ |n this, all moments are written in terms of themselves and lower
moments:

» the mean is set equal to the deterministic process.
» the second moments are assumed to be gaussian, and depend upon the mean
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Noise Suppression and Exploitation (Examples)

® Feedback for Noise Suppression
® Stochastic Focussing
® Stochastic Switches




Noise Attenuation through Negative Feedback
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Steady-State Moments
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The steady-state covariances equation

AS +5AT + BBT =0 Lyapunov Equation

can be solved algebraically for .

_ 1—¢ b k1
Soo =02 = : 1 where ¢ = —, b= —, n= —
22 = 0y, L1 b9 1_|_77+ Pp ¢ n




Feedback vs. No Feedback

In order to compare the noise in the two cases, we must ensure that
both configuations have the same mean!

Impose the constraint: pbf =

p
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This may be achieved by choosing kg = k, + kl,uNFB
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Protein variance is always smaller with negative feedback!




mMRNA
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Note that these distributions are NOT Gaussian.
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Exploiting the Noise:

Failure of the linear noise approximation
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From Jensen’s Inequality:
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* Noise enhances signal!
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